首页站长资讯ChatGPT引发AI芯片荒,台积电成了英伟达身后的超级大赢家
3757

ChatGPT引发AI芯片荒,台积电成了英伟达身后的超级大赢家

站长网2023-06-27 17:06:542

1849年,美国加州发现金矿的消息传开后,淘金热开始了。无数人涌入这片新土地,他们有的来自东海岸,有的来自欧洲大陆,还有来到美国的第一代华人移民,他们刚开始把这个地方称为「金山」,后来又称为「旧金山」。

但不管如何,来到这片新土地的淘金者都需要衣食住行,当然最关键的还是淘金的装备——铲子。正所谓「工欲善其事,必先利其器」,为了更高效地淘金,人们开始疯狂地涌向卖铲人,连带着财富。

一百多年后,旧金山往南不远,两家硅谷公司掀起了新的淘金热:OpenAI 第一个发现了 AI 时代的「金矿」,英伟达则成为了第一批「卖铲人」。和过去一样,无数人和公司开始涌入这片新的热土,拿起新时代的「铲子」开始淘金。

不同的是,过去的铲子几乎不存在什么技术门槛,但今天英伟达的 GPU 却是所有人的选择。今年以来,仅字节跳动一家就向英伟达订购了超过10亿美元的 GPU,包括10万块 A100和 H800加速卡。百度、谷歌、特斯拉、亚马逊、微软……这些大公司今年至少都向英伟达订购了上万块 GPU。

但这依然不够。旷视科技CEO 印奇3月底在接受财新采访的时候表示,中国只有大约4万块 A100可用于大模型训练。随着 AI 热潮的持续,英伟达上一代高端 GPU A100的阉割版——A800在国内一度也涨到了10万元一块。

6月的一场非公开会议上,OpenAI CEO Sam Altman 再次表示,GPU 的严重短缺,导致了很多优化 ChatGPT 的工作被迫推迟。按照技术咨询机构 TrendForce 的测算,OpenAI 需要大约3万块 A100才能支持对 ChatGPT 的持续优化和商业化。

就算从今年1月 ChatGPT 的新一轮爆发算起,AI 算力的短缺也持续了近半年,这些大公司为什么还缺 GPU 和算力?

ChatGPT们缺显卡?缺的是英伟达

借用一句广告语:不是所有 GPU 都是英伟达。GPU 的短缺,实质是英伟达高端 GPU 的短缺。对 AI 大模型训练而言,要么选择英伟达 A100、H100GPU,要么也是去年禁令后英伟达专门推出的减配版 A800、H800。

AI 的使用包括了训练和推理两个环节,前者可以理解为造出模型,后者可以理解为使用模型。而AI 大模型的预训练和微调,尤其是预训练环节需要消耗大量的算力,特别看重单块 GPU 提供的性能和多卡间数据传输能力。但在今天能够提供大模型预训练计算效率的 AI 芯片(广义的 AI 芯片仅指面向 AI 使用的芯片):

不能说不多,只能说非常少。

大模型很重要的一个特征是至少千亿级别的参数,背后需要巨量的算力用来训练,多个 GPU 之间的数据传输、同步都会导致部分 GPU 算力闲置,所以单个 GPU 性能越高,数量越少,GPU 的利用效率就高,相应的成本则越低。

而英伟达2020年以来发布的 A100、H100,一方面拥有单卡的高算力,另一方面又有高带宽的优势。A100的 FP32算力达到19.5TFLOPS(每秒万亿次浮点运算),H100更是高达134TFLOPS。

同时在 NVLink 和 NVSwitch 等通信协议技术上的投入也帮助英伟达建立了更深的护城河。 到 H100上,第四代 NVLink 可以支持多大18个 NVLink 链接,总带宽达900GB/s,是 PCIe5.0带宽的7倍。

面向中国市场定制的 A800和 H800,算力几乎不变,主要是为了避开管制标准,带宽分别削减了四分之一和一半左右。按照彭博社的说法,同样的 AI 任务,H800要花比 H100多10% -30% 的时间。

但即便如此,A800和 H800的计算效率依然超过其他 GPU 和 AI 芯片。这也是为什么在 AI 推理市场会出现「百花齐放」的想象,包括各大云计算公司自研的 AI 芯片和其他 GPU 公司都能占据一定的份额,到了对性能要求更高的 AI 训练市场却只有英伟达「一家独大」。

当然,在「一家独大」的背后,软件生态也是英伟达最核心的技术护城河。这方面有很多文章都有提及,但简而言之,最重要的是英伟达从2007推出并坚持的CUDA 统一计算平台,时至今日已经成为了 AI 世界的基础设施,绝大部分 AI 开发者都是以 CUDA 为基础进行开发,就如同 Android、iOS 之于移动应用开发者。

不过照理说,英伟达也明白自己的高端 GPU 非常抢手,春节后就有不少消息指出,英伟达正在追加晶圆代工订单,满足全球市场的旺盛需求,这几个月时间理应能够大幅提高代工产能,毕竟又不是台积电最先进的3nm 工艺。

然而问题恰恰出在了代工环节。

英伟达的高端 GPU,离不开台积电

众所周知,消费电子的低潮以及还在继续的去库存,导致晶圆代工大厂的产能利用率普遍下滑,但台积电的先进制程属于例外。

由于 ChatGPT 引发的 AI 热潮,基于台积电7nm 工艺的 A100、4nm 的 H100都在紧急追加订单,其中台积电5/4nm 的产线已经接近满载。供应链人士也预估,英伟达大量涌向台积电的 SHR(最急件处理等级)订单将持续1年。

换言之,台积电的产能并不足以应付英伟达短期内的旺盛需求。不怪有分析师认为,由于 A100、H100GPU 始终供不应求,不管从风险控制还是成本降低的角度,在台积电之外寻找三星乃至英特尔进行代工都是题中应有之义。

但事实证明,英伟达至少在短期内没有这个想法,也没有办法离开台积电。就在 Sam Altman 抱怨英伟达 GPU 不够用之前,英伟达创始人兼 CEO 黄仁勋才在 COMPUTEX 上表示,英伟达下一代芯片还是会交由台积电代工。

技术上最核心的原因是,从 V100、A100到 H100,英伟达的高端加速卡都采用台积电 CoWoS 先进封装技术,用来解决高算力 AI 背景下芯片的存算一体。而 CoWoS 先进封装核心技术:没有台积电不行。

2012年,台积电推出了独家的 CoWoS 先进封装技术,实现了从晶圆代工到终端封装的一条龙服务,客户包括英伟达、苹果等多家芯片大厂在高端产品上都全线采用。为了满足英伟达的紧急需求,台积电甚至采用部分委外转包的方法,但其中并不包括 CoWoS 制程,台积电仍专注在最有价值的先进封装部分。

按照野村证券预估,2022年底台积电 CoWoS 年化产能大概在7-8万片晶圆,到2023年底有望增至14-15万片晶圆,到2024年底有望挑战20万片产能。

但远水解不了近火,台积电先进 CoWoS 封装的产能严重供不应求,去年起台积电 CoWoS 的订单就在翻番,今年来自谷歌、AMD 的需求同样强劲。即便是英伟达,也要通过黄仁勋与台积电创始人张忠谋的私人关系,进一步争取更高的优先级。

写在最后

过去几年由于疫情和地缘政治的变化,所有人都意识到了一种建立在沙子之上的尖端技术——芯片是如此重要。ChatGPT 之后,AI 再度举世瞩目,而连带对人工智能和加速算力的渴望,无数芯片订单也纷至沓来。

高端 GPU 的设计和制造都需要很长研发投入和积累,需要面对难以逾越的硬件和软件壁垒,这也导致了在这场「算力的盛宴」之中,英伟达和台积电可以拿到大部分的蛋糕以及话语权。

不管是今天关心生成式 AI,还是上一轮以图像识别为主的深度学习浪潮,中国公司在 AI 软件能力上的追赶速度都有目共睹。然而中国公司花费巨资,调转船头开向 AI 的时候,很少着眼于更底层的硬件。

但 AI 加速背后,最重要的四款 GPU 已经有两款在国内受限,另外两款阉割的 A800、H800不仅拖慢了中国公司的追赶速度,同时也无法排除受限的风险。比起在大模型上的角逐,或许,我们更需要看到中国公司在更底层的竞争。

0002
评论列表
共(0)条